

Département de l'Isère Service Eau et Territoires

Suivi de la qualite des eaux souterraines dans le departement de l'Isere -Rapport annuel pour l'annee 2015

Station de surveillance des eaux souterraines - Thuellin (LDA26, 2015)

Rapport n° 14-595- Mai 2016

Sciences et Techniques de l'Environnement – B.P. 374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22

SOMMAIRE

<u> </u>	?REAMBULE	
<u>2</u> <u>I</u>	PRESENTATION DU PROGRAMME DE SUIVI	2
2.1	LES DIFFERENTS PROGRAMMES DE SUIVI	
2.1	CARTE DEPARTEMENTALE DES STATIONS SUIVIES SUR L'ANNEE 2015	
2.2	NORMES DE QUALITE EN VIGUEUR POUR LES EAUX SOUTERRAINES	
2.3	NORMES DE QUALITE EN VIGUEUR POUR LES EAUX SOUTERRAINES	4
э т		_
3 1	RESULTATS DES ANALYSES PHYSICOCHIMIQUES DE L'ANNEE 2015	
3.1		5
3.1.1		
3.1.2		
3.1.3		
3.2	RESULTATS DES ANALYSES PHYSICOCHIMIQUES CLASSIQUES	
3.2.1	MESURES IN SITU	9
3.2.2		
2 2	RESULTATS DES ANALYSES DE MICROPOLLUANTS	11
3.3	METALLY POLID LEG DEGGOLD CEG GED ATECTOLIEG	11
3.3.1	METAUX POUR LES RESSOURCES STRATEGIQUES	
	PHYTOSANITAIRES	11
3.3.1	PHYTOSANITAIRES	11
3.3.1 3.3.2	PHYTOSANITAIRES	11
3.3.1 3.3.2	PHYTOSANITAIRES	11
3.3.1 3.3.2 3.3.3	PHYTOSANITAIRES MICROPOLLUANTS ORGANIQUES	11 16
3.3.1 3.3.2 3.3.3	PHYTOSANITAIRES	1116
3.3.1 3.3.2 3.3.3 4 <u>I</u> 4.1	PHYTOSANITAIRES	111618
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2	PHYTOSANITAIRES	11161818
3.3.1 3.3.2 3.3.3 4 <u>I</u> 4.1 4.2 4.2.1	PHYTOSANITAIRES MICROPOLLUANTS ORGANIQUES ÉVOLUTION TEMPORELLE DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE ÉVOLUTION PARAMETRE NITRATES CAPTAGES A LONGUE CHRONIQUE	1116181818
3.3.1 3.3.2 3.3.3 4 <u>I</u> 4.1 4.2 4.2.1 4.2.2	PHYTOSANITAIRES MICROPOLLUANTS ORGANIQUES ÉVOLUTION TEMPORELLE DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE ÉVOLUTION PARAMETRE NITRATES CAPTAGES A LONGUE CHRONIQUE CAPTAGES PRIORITAIRES	1118181818
3.3.1 3.3.2 3.3.3 4 <u>I</u> 4.1 4.2 4.2.1 4.2.2 4.2.3	PHYTOSANITAIRES MICROPOLLUANTS ORGANIQUES EVOLUTION TEMPORELLE Donnees anterieures du Departement de l'Isere ÉVOLUTION PARAMETRE NITRATES CAPTAGES A LONGUE CHRONIQUE CAPTAGES PRIORITAIRES RESEAU DE SURVEILLANCE	111618181818
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4	PHYTOSANITAIRES MICROPOLLUANTS ORGANIQUES ÉVOLUTION TEMPORELLE DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE ÉVOLUTION PARAMETRE NITRATES CAPTAGES A LONGUE CHRONIQUE CAPTAGES PRIORITAIRES RESEAU DE SURVEILLANCE RESSOURCES STRATEGIQUES	11181818182324
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	PHYTOSANITAIRES MICROPOLLUANTS ORGANIQUES ÉVOLUTION TEMPORELLE DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE ÉVOLUTION PARAMETRE NITRATES CAPTAGES A LONGUE CHRONIQUE CAPTAGES PRIORITAIRES RESEAU DE SURVEILLANCE RESSOURCES STRATEGIQUES CONCLUSIONS	111818181823242525
3.3.1 3.3.2 3.3.3 4 <u>I</u> 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3	PHYTOSANITAIRES. MICROPOLLUANTS ORGANIQUES. ÉVOLUTION TEMPORELLE. DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE ÉVOLUTION PARAMETRE NITRATES. CAPTAGES A LONGUE CHRONIQUE. CAPTAGES PRIORITAIRES. RESEAU DE SURVEILLANCE. RESSOURCES STRATEGIQUES. CONCLUSIONS. ÉVOLUTION DES TENEURS EN PESTICIDES.	
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.3.1	PHYTOSANITAIRES MICROPOLLUANTS ORGANIQUES ÉVOLUTION TEMPORELLE DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE ÉVOLUTION PARAMETRE NITRATES CAPTAGES A LONGUE CHRONIQUE CAPTAGES PRIORITAIRES RESEAU DE SURVEILLANCE RESSOURCES STRATEGIQUES CONCLUSIONS ÉVOLUTION DES TENEURS EN PESTICIDES LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015	111818182324252526
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3.1 4.3.1	PHYTOSANITAIRES. MICROPOLLUANTS ORGANIQUES. ÉVOLUTION TEMPORELLE. DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE. ÉVOLUTION PARAMETRE NITRATES. CAPTAGES A LONGUE CHRONIQUE. CAPTAGES PRIORITAIRES. RESEAU DE SURVEILLANCE RESSOURCES STRATEGIQUES CONCLUSIONS. ÉVOLUTION DES TENEURS EN PESTICIDES LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015 E EVOLUTION DES TENEURS EN PESTICIDES SUR LES SITES A ENJEUX	11181818232425252626
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3.1 4.3.1	PHYTOSANITAIRES MICROPOLLUANTS ORGANIQUES ÉVOLUTION TEMPORELLE DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE ÉVOLUTION PARAMETRE NITRATES CAPTAGES A LONGUE CHRONIQUE CAPTAGES PRIORITAIRES RESEAU DE SURVEILLANCE RESSOURCES STRATEGIQUES CONCLUSIONS ÉVOLUTION DES TENEURS EN PESTICIDES LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015	11181818232425252626
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3.1 4.3.1	PHYTOSANITAIRES. MICROPOLLUANTS ORGANIQUES. ÉVOLUTION TEMPORELLE. DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE. ÉVOLUTION PARAMETRE NITRATES. CAPTAGES A LONGUE CHRONIQUE. CAPTAGES PRIORITAIRES. RESEAU DE SURVEILLANCE RESSOURCES STRATEGIQUES CONCLUSIONS. ÉVOLUTION DES TENEURS EN PESTICIDES LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015 E EVOLUTION DES TENEURS EN PESTICIDES SUR LES SITES A ENJEUX	11181818232425252626
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3.1 4.3.1	PHYTOSANITAIRES. MICROPOLLUANTS ORGANIQUES. ÉVOLUTION TEMPORELLE. DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE. ÉVOLUTION PARAMETRE NITRATES. CAPTAGES A LONGUE CHRONIQUE. CAPTAGES PRIORITAIRES. RESEAU DE SURVEILLANCE RESSOURCES STRATEGIQUES CONCLUSIONS. ÉVOLUTION DES TENEURS EN PESTICIDES LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015 E EVOLUTION DES TENEURS EN PESTICIDES SUR LES SITES A ENJEUX	11181818232425252626
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3.1 4.3.2 4.3.3	PHYTOSANITAIRES. MICROPOLLUANTS ORGANIQUES. ÉVOLUTION TEMPORELLE. DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE. ÉVOLUTION PARAMETRE NITRATES. CAPTAGES A LONGUE CHRONIQUE. CAPTAGES PRIORITAIRES. RESEAU DE SURVEILLANCE RESSOURCES STRATEGIQUES CONCLUSIONS. ÉVOLUTION DES TENEURS EN PESTICIDES LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015 E EVOLUTION DES TENEURS EN PESTICIDES SUR LES SITES A ENJEUX	
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2.1 4.2.2 4.2.3 4.2.4 4.3.1 4.3.2 4.3.3	PHYTOSANITAIRES. MICROPOLLUANTS ORGANIQUES. ÉVOLUTION TEMPORELLE. DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE. ÉVOLUTION PARAMETRE NITRATES. CAPTAGES A LONGUE CHRONIQUE. CAPTAGES PRIORITAIRES. RESEAU DE SURVEILLANCE. RESSOURCES STRATEGIQUES. CONCLUSIONS. ÉVOLUTION DES TENEURS EN PESTICIDES. LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015. EVOLUTION DES TENEURS EN PESTICIDES SUR LES SITES A ENJEUX. MISE EN EVIDENCE DES MOLECULES EMERGENTES.	1118181823242525262630
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3.1 4.3.2 4.3.3	PHYTOSANITAIRES. MICROPOLLUANTS ORGANIQUES. DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE ÉVOLUTION PARAMETRE NITRATES. CAPTAGES A LONGUE CHRONIQUE. CAPTAGES PRIORITAIRES. RESEAU DE SURVEILLANCE. RESSOURCES STRATEGIQUES. CONCLUSIONS. ÉVOLUTION DES TENEURS EN PESTICIDES. LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015. EVOLUTION DES TENEURS EN PESTICIDES SUR LES SITES A ENJEUX. MISE EN EVIDENCE DES MOLECULES EMERGENTES. NTERPRETATION GENERALE. QUALITE DES EAUX PAR PROGRAMME DE SUIVI.	
3.3.1 3.3.2 3.3.3 4 I 4.1 4.2 4.2.3 4.2.4 4.2.5 4.3.1 4.3.2 4.3.3 5 I 5.1 5.2	PHYTOSANITAIRES. MICROPOLLUANTS ORGANIQUES. ÉVOLUTION TEMPORELLE. DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE. ÉVOLUTION PARAMETRE NITRATES. CAPTAGES A LONGUE CHRONIQUE. CAPTAGES PRIORITAIRES. RESEAU DE SURVEILLANCE. RESSOURCES STRATEGIQUES. CONCLUSIONS. ÉVOLUTION DES TENEURS EN PESTICIDES. LISTE DES SUBSTANCES IDENTIFIEES ENTRE 2011 ET 2015. EVOLUTION DES TENEURS EN PESTICIDES SUR LES SITES A ENJEUX. MISE EN EVIDENCE DES MOLECULES EMERGENTES.	

FICHE QUALITE DU DOCUMENT

Titre du projet	Suivi de la qualité des eaux souterraines dans le département de l'Isère - Programme 2015 à 2018- rapport annuel 2015
Titre du document	rapport n° 14-595/2015
Date	Février 2016
Auteur(s)	Sciences et techniques de l'Environnement

Contrôle qualité

Version	Rédigé par	Date	Visé par :	Date
V0	Audrey Péricat	31/03/16		
V1	Audrey Péricat	26/05/16		
V2	Audrey Péricat	24/06/16		

Suite aux remarques du Département de l'Isère

Destinataires

Envoyé à :			
Nom	Organisme	Date:	Format
Olivier Toqué	DÉPARTEMENT DE L'ISÈRE	26/05/16	informatique
pour rapport définitif			

1 PREAMBULE

Depuis 1996, le Département de l'Isère a mis en place un réseau de suivi des eaux brutes sur des points d'eau destinées à l'usage eau potable et desservant des faibles populations afin de renforcer la connaissance de ces ouvrages dont le suivi réglementaire s'avérait insuffisant.

A la création du réseau, le suivi renforcé portait principalement sur le paramètre « nitrates » (N03 -) à une fréquence de 12 fois par an, puis il a été élargi à une liste limitée de produits phytosanitaires qui sont aujourd'hui, pour la plupart, interdits d'utilisation.

Jusqu'en 2010, c'est ainsi un peu moins de 80 points d'eau qui ont fait l'objet de ce suivi, essentiellement sur des points d'eau situés dans le Nord Isère.

La mise en œuvre de la Directive Cadre sur l'Eau a entraîné une refonte importante des réseaux de suivi institutionnels dans le domaine de la qualité des eaux souterraines avec la mise en place :

- ✓ d'un programme de surveillance (RCS) de l'état chimique des eaux souterraines réalisé par l'Agence de l'eau RMC ;
- ✓ d'un réseau de contrôle opérationnel (RCO) pour tous les points d'eau présentant des problèmes qualitatifs avérés.

La mise en place de ces réseaux ont conduit, en 2011, à une refonte importante du réseau départemental de suivi des eaux souterraines :

- ✓ liste de paramètres analysés élargie (Nitrates, Pesticides, HAP, PCB, COV, Métaux)
- ✓ 57 points suivis selon différents protocoles :
 - 14 captages prioritaires analysés 4 fois/an;
 - 21 captages dits « en surveillance » analysés 2 fois/an ;
 - 22 points d'eau au titre de la connaissance des ressources stratégiques de la Molasse et du Catelan analysés 1 fois/an

2 Presentation du programme de suivi

2.1 LES DIFFERENTS PROGRAMMES DE SUIVI

L'étude de la qualité des nappes en Isère pour la période 2015 à 2018 vient compléter les réseaux existants de l'Agence de l'eau (AERMC) et de l'Agence régionale de santé (ARS).

Le programme de suivi réalisé en 2015 s'intègre dans 3 réseaux de suivi. Le tableau suivant précise les programmes et leurs objectifs, le nombre de stations concernés, le contenu analytique et la fréquence de prélèvements.

Réseau	objectifs	Nombre	Programme analytique	Fréquence de
		de points		suivi
		concernés		
Captages	Captages prioritaires	14 points	Schéma d'analyse	4 / an : mars,
prioritaires	inscrit au SDAGE –		complet intégrant les	juin,
	dépassement des limites		nitrates (NO3-) +	septembre,
	de qualité		liste de micropolluants	décembre
Programme	Suivi des eaux brutes	21 points	organiques	2 / an : mars
de	des ressources			et septembre
surveillance	importantes en eau			
	potable : aquifères des			
	alluvions fluvio-			
	glaciaires du Nord			
	Isère,			
Ressources	aquifères de la Molasse:	17 points	Micropolluants	1 / an en
stratégiques	ressources stratégiques		organiques (pesticides)	septembre
	identifiées au SDAGE		$+ NO_3$	
	Aquifère du Catelan	4 points	+Fer + Manganèse	1 / an en juin

On rappelle ici que les analyses sont faites sur eaux brutes avant traitement : il ne s'agit pas d'analyses sur l'eau distribuée (après traitement).

2.2 Carte departementale des stations suivies sur l'année 2015

La carte fournie en page suivante présente le réseau départemental du Département de l'Isère avec la liste des stations (source : Dpt 38).

Carte 1 : stations de surveillance des eaux souterraines du département de l'Isère – année 2015

2.3 Normes de qualite en vigueur pour les eaux souterraines

Le texte de référence est l'Arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines.

NORMES DE QUALITÉ POUR LES EAUX SOUTERRAINES

POLLUANT	NORMES DE QUALITÉ
Nitrates	50 mg/l
Substances actives des pesticides, ainsi que les métabolites et produits de dégradation et	
de réaction pertinents (1)	0,5 μg/l (total) (2)

- (1) On entend par pesticides les produits phytopharmaceutiques et les produits biocides.
- (2) On entend par total la somme de tous les pesticides détectés et quantifiés dans le cadre de la procédure de surveillance, y compris leurs métabolites, les produits de dégradation et les produits de réaction pertinents.

ANNEXE II

VALEURS SEUILS POUR LES EAUX SOUTERRAINES

Partie A. - Liste minimale de paramètres et valeurs seuils associées retenues au niveau national.

PARAMETRES	VALEURS SEUILS RETENUES au niveau national	
Arsenic	10 µg/l (1)	
Cadmium	5 µg/l	
Plomb	10 ддЛ (2)	
Mercure	1 д9/1	
Trichloréthylène	10 μg/l	
Tétrachloréthylène	10 µg/l	
Ammonium	0,5 mg/l (1)	

⁽¹⁾ Valeur seuil applicable uniquement aux aquifères non influencés pour ce paramètre par le contexte géologique – à définir localement pour les nappes dont le contexte géologique influence ce paramètre.

Remarques : les métaux lourds Arsenic, Cadmium, Plomb, et Mercure ne sont pas analysés dans les eaux souterraines en 2015.

⁽²⁾ Dans le cas d'un aquifère en lien avec les eaux de surface et qui les alimente de façon significative, prendre comme valeur seuil celle retenue pour les eaux douces de surface en tenant compte éventuellement des facteurs de dilution et d'atténuation.

3 RESULTATS DES ANALYSES PHYSICOCHIMIQUES DE L'ANNEE 2015

3.1 DEROULEMENT DES CAMPAGNES DE PRELEVEMENTS

3.1.1 RAPPEL DES CONDITIONS DE CAMPAGNES

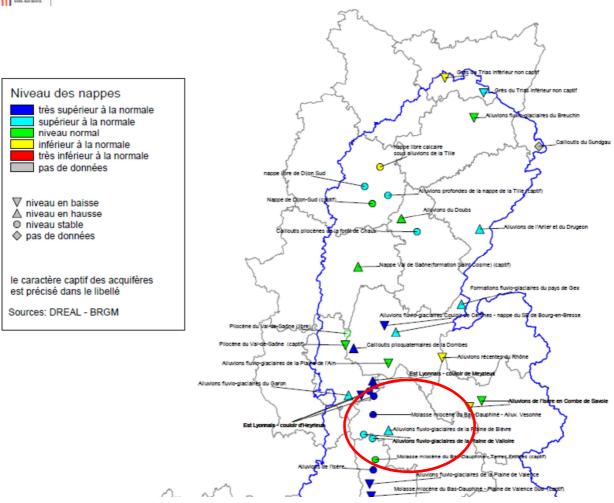
Les prélèvements des eaux souterraines du département de l'Isère se sont déroulés en mars, juin, septembre et décembre 2015. C'est le laboratoire de la Drôme (LDA26) qui a eu en charge l'ensemble des prélèvements et analyses. Au total 54 stations ont été échantillonnées.

3.1.2 Tableau de synthese des prelevements

En page suivante, sont présentées les dates de prélèvements sur chacune des stations suivis au titre de la surveillance des eaux souterraines du département de l'Isère. Au total, 114 échantillons sont analysés en 2015.

A noter que le point Bas Beaufort – Puits Molasse appartient au réseau des ressources stratégiques. Il a bénéficié cependant d'un suivi sur 2 campagnes de prélèvements au même titre que le Puits alluvions – Bas Beaufort.

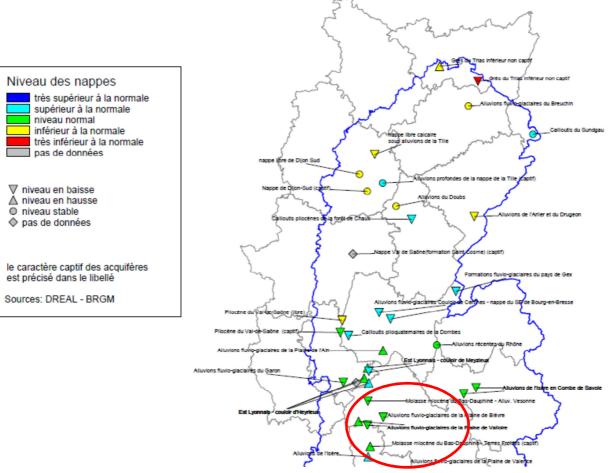
Réseau		dates de car	mpagnes 2015		
nom des captages	C1 - mars	C2 -juin	C3 - septembre	C4 - décembre	Total 2015
Captages prioritaires					
Captage de Sermerieu	19/03/2015	16/06/2015	24/09/2015	09/12/2015	
Captage Layat	19/03/2015	16/06/2015	16/09/2015	09/12/2015	
Captage les Bains	16/03/2015	15/06/2015	17/09/2015	08/12/2015	
Captage Les Biesses	16/03/2015	15/06/2015	17/09/2015	08/12/2015	
Captage Morellon	16/03/2015	15/06/2015	23/09/2015	08/12/2015	
Captage Vittoz, Frêne, Barril					
(mélange)	19/03/2015	16/06/2015	16/09/2015	09/12/2015	13 stations - 4
Forage de Siran	17/03/2015	22/06/2015	23/09/2015	08/12/2015	campagnes
Puits de Seyez et Donis	16/03/2015	15/06/2015	17/09/2015	08/12/2015	
Puits des Chirouzes	16/03/2015	17/06/2015	15/09/2015	08/12/2015	
Source Melon	17/03/2015	25/06/2015	15/09/2015	08/12/2015	
Source Michel	17/03/2015	15/06/2015	15/09/2015	08/12/2015	
Captage de Reytebert	19/03/2015	16/06/2015	16/09/2015	09/12/2015	
Forage du Poulet	17/03/2015	15/06/2015	15/09/2015	08/12/2015	
Réseau surveillance	C1 - 20	015	C2 -	2015	
	11/02/2017		15/00/2015		
Bas Beaufort - puits alluvions	11/03/2015		15/09/2015		ļ
Captage de la Blache	16/03/2015		15/09/2015		ļ
Captage des Aillats	17/03/2015		23/09/2015		
Captage des Leschères	17/03/2015		23/09/2015		
Captage Girard	19/03/2015		16/09/2015		
Captage Sort	19/03/2015		24/09/2015		
Captages des Teppes	19/03/2015		16/09/2015		
Drains de Courbon	16/03/2015		15/09/2015		
Forage de Valencogne	19/03/2015		16/09/2015		20 stations - 2
Pré Bonnet - Puits n°1	18/03/2015		24/09/2015		campagnes
Puits de Gerbey	19/03/2015		22/09/2015		
Puits de la Plaine	19/03/2015		22/09/2015		1
Puits de Paladru	19/03/2015		16/09/2015		ł
Puits de Passeron	19/03/2015		16/09/2015		
Puits de Pignieu Puits du Bois du Four	17/03/2015 19/03/2015		24/09/2015 24/09/2015		
Réservoir du Mouton	17/03/2015		23/09/2015		
Source Boisseaz	17/03/2015		15/09/2015		
Source du Perrier	16/03/2015		15/09/2015		1
Station du Grand Marais	17/03/2015		24/09/2015		†
		G . 1		26.1	
Ressource stratégique	C1 - 2015-	Catelan		- Molasse	
Bas Beaufort - forage molasse	11/03/2015		15/09/2015		ļ
Forage bessins			15/09/2015		ļ
Forage Buffevent - F2			22/09/2015		ļ
Forage de Peyrinard			15/09/2015		
Forage des Lites			24/09/2015		
Forage d'exploitation des Bielle			22/09/2015		
Forage d'exploitation F1 de Chi	milin		16/09/2015		ļ
Forage du brachet			23/09/2015		
Forage F2 Marcellin en Gorges			22/09/2015		21 stations - 1
Forage falconnette			17/09/2015		campagne : 17
Puits lieu dit Saint Romain			17/09/2015		sur la
Forage le Carloz			22/09/2015		Molasse ; 4
Forage lieu dit La Combe			22/09/2015		sur le Catelan
Forage Lolette			17/09/2015		
Forage Meyrieu			22/09/2015		
Forage Perrier			15/09/2015		
Forage Pisserotte		16/06/0017	23/09/2015		ļ
Forage Pont Sicard		16/06/2015			
Piézomètre lieu dit Chevalière		16/06/2015			ļ
Puits lieu dit prairie Mozas		16/06/2015			ļ
Forage Grande Charrière =		16/06/0015			
forage Pré de Letra		16/06/2015	10		115
Nombre de prélèvements	33	17	49	13	112


3.1.3 Contexte hydrologique de l'annee 2015

 $Source: \underline{http://www.rhone-mediterranee.eaufrance.fr/milieux-aquatiques/situation-hydrologique/bulletins-hydro.php}$

Au mois de Mars 2015, les nappes se maintiennent à de très hauts niveaux sur la fin du printemps, les précipitations de l'hiver ont permis une bonne recharge des nappes.

Bassin Rhône-Méditerranée Situation des ressources en eaux souterraines fin Mars 2015



Sur le printemps, le niveau des nappes baisse de façon continue et régulière. Le niveau reste supérieur à la normale sur le département. Le mois de juin est marqué par des épisodes pluvieux assez importants sur la 1ère quinzaine. La fin du mois est chaude et sans précipitations.

Après un été très chaud et sec, et plusieurs épisodes caniculaires qui se succèdent du 20 juin à la fin août, le mois de septembre est arrosé, frais et lumineux. La pluviométrie de la région est globalement excédentaire. Les nappes présentent localement des prémices de recharge.

Bassin Rhône-Méditerranée Situation des ressources en eaux souterraines fin Septembre 2015

L'automne est exceptionnellement chaud et sec, très doux et très ensoleillé (en particulier le mois de novembre). La pluviométrie mensuelle moyenne de la région est déficitaire. En ce qui concerne les eaux souterraines, de nombreuses nappes repartent à la baisse en période habituelle de recharge. Les nappes de l'Isère restent à des niveaux proches de la normale saisonnière.

L'année 2015 a été globalement chaude (+1°C par rapport aux moyennes de saison à Grenoble St Geoirs), avec un cumul de précipitations légèrement inférieur à la normale (757 mm en 2015 contre 792 mm mesuré en moyenne sur la période 1973-2016). Néanmoins, les nappes du département sont restées à des niveaux conformes à la normale pour cette année.

3.2 RESULTATS DES ANALYSES PHYSICOCHIMIQUES CLASSIQUES

3.2.1 MESURES IN SITU

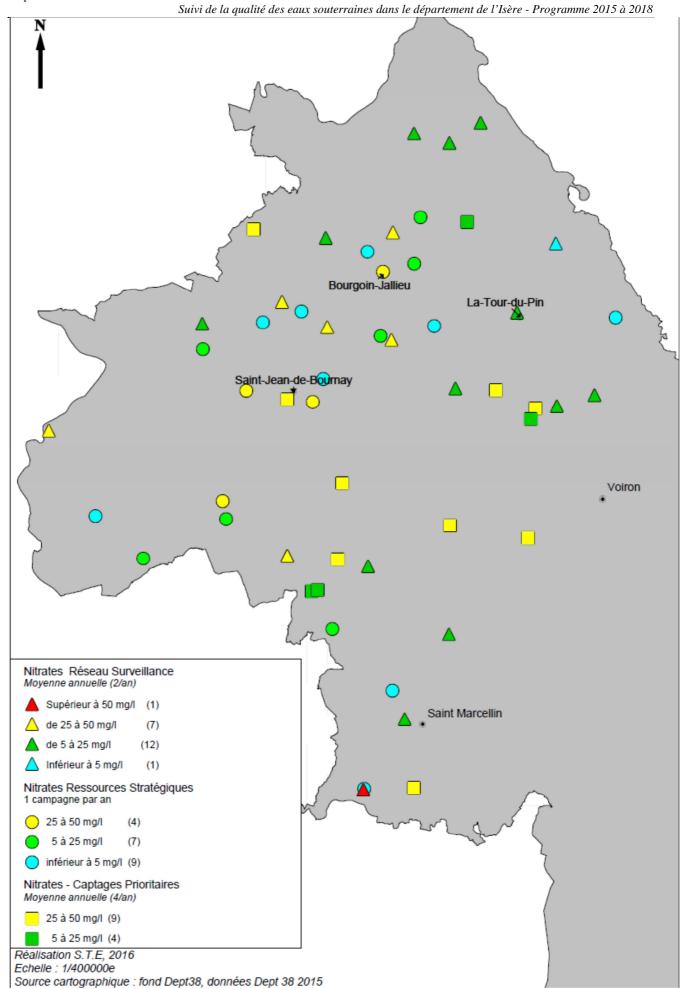
Les mesures in situ sont faites lors de chaque campagne de prélèvements : température (°C), pH, conductivité (μ S/cm à 25°C), oxygène dissous (en mg/l et % saturation). Ces mesures permettent de qualifier les eaux, et d'évaluer notamment directement sur le terrain l'oxygénation des eaux, capacité d'oxydo-réduction, la minéralisation, l'acidification et la température. Ces paramètres sont fondamentaux dans le cadre de tout suivi physico-chimique.

3.2.2 NITRATES

L'ion nitrate NO₃ est un composé de l'azote particulièrement soluble dans l'eau et responsable d'une pollution des eaux. Les nitrates sont sources d'eutrophisation des eaux superficielles. En excès, ils présentent également des risques pour la santé.

Les nitrates sont présents en faible quantité (1 à 10 mg/l) dans les eaux à l'état naturel. Les sources de contamination des eaux sont d'origine agricole (engrais, fumier, lisier); mais aussi urbaine (rejets d'assainissement, industries). La problématique nitrates est fréquemment associée aux secteurs de grandes cultures céréalières où des engrais sont déversés en grande quantité. Dans le Département de l'Isère, il s'agit du bassin de la Bourbre, et tout le Dauphiné

En Europe, la directive Nitrates vise à réduire cette pollution, les eaux destinées à la consommation humaine doivent respecter des valeurs limites : 50 mg/L en France pour être qualifiées de potables.


Le suivi des nitrates sur les eaux souterraines du département de l'Isère révèle une qualité pour ce paramètre assez bonne.

La carte en page suivante présente les résultats des analyses des eaux souterraines de l'Isère pour le paramètre nitrates en moyenne annuelle, c'est-à-dire sur 1 à 4 mesures suivant le programme concerné.

<u>Légende</u>: l'expertise a été faite sur la moyenne annuelle des analyses de nitrates.

Valeur en mg/l	couleur	Qualité des eaux	Etat chimique
>50	rouge	Mauvais état	Médiocre
25 à 50	jaune	Etat moyen	Bon
5 à 25	vert	Bon état	
0 à 5	bleu	Très bon état	

En page suivante - Carte 1 : Etat des eaux souterraines pour le paramètre NITRATES – année 2015

S.T.E. Sciences et Techniques de l'Environnement - Proposition D14-595 -octobre 2016 – page 10

Les conclusions pour ce paramètre nitrates sont les suivantes :

- ✓ Une seule station ne respecte pas la norme impérative (pour la consommation humaine) de 50 mg/l, il s'agit de la **source Perrier à Saint Hilaire du Rosier** (réseau de surveillance RS) pour les deux campagnes de prélèvements (53 et 56 mg/l).
- ✓ Les teneurs en nitrates restent élevées (entre 40 et 50 mg/l), sur les captages prioritaires suivants : Les Biesses et Morellon et sur le réseau de surveillance : captages de Bas Beaufort alluvions et des Aillats.

A l'inverse, on observe des valeurs proches des références (0 à 5 mg/l) sur certains points des ressources stratégiques (Meyrieu, Perrier, Pisserotte, Chevalière, Marcellin, Brachet, F1 Chimilin, Bessans).

A noter que le captage Bas Beaufort (puits alluvions) n'est plus utilisé pour la consommation.

3.3 RESULTATS DES ANALYSES DE MICROPOLLUANTS

3.3.1 METAUX POUR LES RESSOURCES STRATEGIQUES

Les éléments Fer (Fe) et Manganèse (Mn) ont été mesurés pour les stations du réseau des ressources stratégiques. L'OMS a fixé des seuils limites pour le Manganèse dans les eaux : 0.4 mg/l pour Mn. Pour le Fer, la référence de qualité des eaux destinées à la conso humaine est de $200\mu\text{g/l}$ (soit 0.2 mg/l).

Ces métaux sont des éléments chimiques naturels assez communs et omniprésents dans l'environnement. Ils sont présents dans de nombreux types de roches et sédiments, dans le sol et dans l'eau. Toutefois, les activités humaines peuvent générer une augmentation des concentrations pour ces métaux (mines, forage, décharge, industries acier).

Les eaux souterraines riches en fer ont souvent une coloration orange et entraînent des problèmes de décolorations et ont un goût désagréable. La forme dissoute du Fer (Fe²⁺) présente peu d'impacts. En revanche, la forme oxydée (Fe³⁺) précipite sous forme d'hydroxydes insolubles dans l'eau (couleur rouille) et génère des problèmes de colmatage et d'odeur dans les réseaux. La présence de manganèse dans l'eau potable représente d'abord une nuisance organoleptique (goût métallique) et esthétique (couleur noire).

Il ressort des analyses deux points majeurs :

- ✓ Le forage Meyrieu à St Jean de Bournay présente des concentrations en Fer et Manganèse très élevées : 21,26 mg(Fe)/l et 0,378 mg(Mn)/l;
- ✓ Le forage du Brachet et le piézomètre Chevalière présentent des concentrations en Fer élevées, respectivement de 1.8 et 1.7 mg(Fe)/l.
- ✓ Le forage F1 Chimilin une concentration en Mn élevée (0.27 mg/l).

Les autres métaux n'ont pas fait l'objet d'analyses

3.3.2 Phytosanitaires

Les phytosanitaires sont mesurés sur tous les points de suivi eaux souterraines. Les analyses ont porté sur plus de 500 molécules appartenant au groupe des phytosanitaires. Il ressort de cette campagne 2015 que des substances ont été détectées sur 42 stations, soit sur 75 % des sites.

98% des molécules identifiées sont des herbicides dont 88% appartiennent à la famille des triazines (Figure 1).

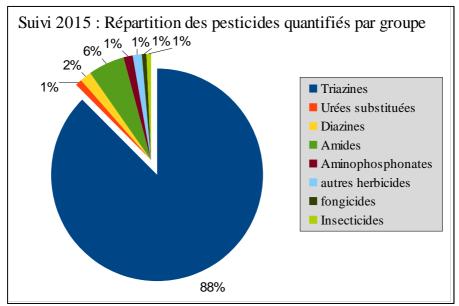


Figure 1 : répartition des pesticides quantifiées par groupe

Les analyses montrent la présence de 22 molécules dans les eaux souterraines avec 288 quantifications (Figure 2) sur l'ensemble des échantillons (114). L'atrazine et ses produits de dégradation sont les plus représentés, les autres groupes étant détectés de manière ponctuelle. On notera tout de même la présence assez fréquente des Amides avec le Metolachlore (R+S).

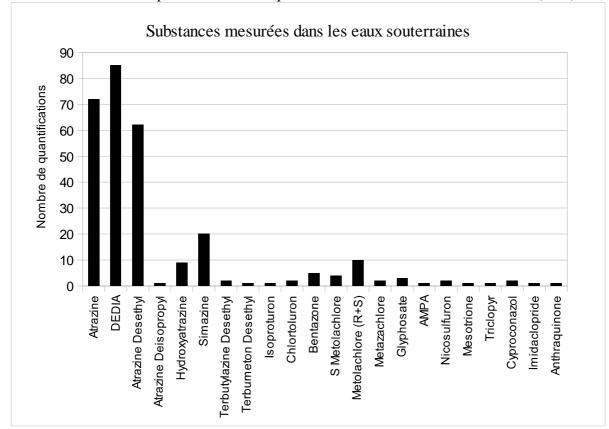
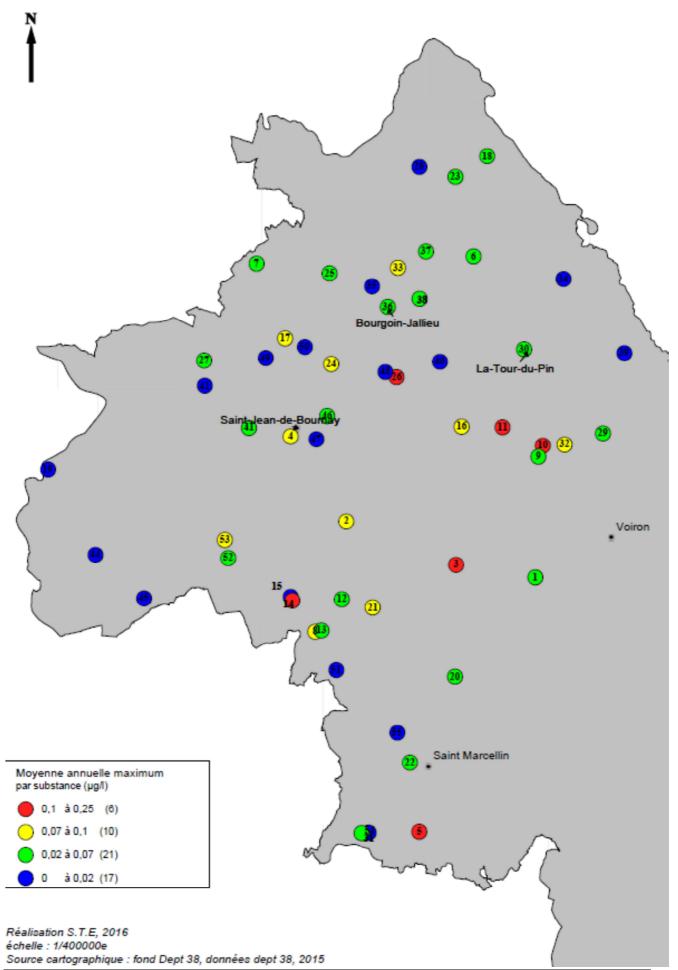


Figure 2 : Molécules identifiées dans les eaux souterraines en 2015 - en nombre de quantifications

Sur les réseaux *captages prioritaires* et *réseau de surveillance* : des <u>pesticides sont quantifiés sur l'ensemble des eaux souterraines étudiées</u>. L'état des eaux pour le paramètre pesticides est présenté sur la Carte 2. Il s'agit de la moyenne annuelle par substance, pour la molécule la plus représentée. Concernant le paramètre « Somme des substances actives Pesticides », aucun dépassement de la valeur seuil de 0.5 µg/l n'est observé lors du suivi 2015.


L'atrazine et ses produits de dégradation (*Desethyl Deisopropylatrazine* (DEDIA) et *Atrazine desethyl*) sont les plus représentés dans les eaux souterraines du département. Ce sont les seules molécules qui ont été mesurées à plus de 0,1 µg/l lors de ce suivi 2015.

Légende de la carte 2 – état des eaux pesticides

Valeur moyenne en µg/l	couleur	Qualité des eaux	Etat chimique
>0.1	rouge	Mauvais état	Médiocre
0.07 à 0.1	jaune	Etat moyen	Bon
0.02 à 0.07	vert	Bon état	
< 0.02	bleu	Très bon état	
Absence de détection			

En page suivante:

Carte 2 : Etat des eaux pour l'évaluation des pesticides par substance (μ g/l) sur la moyenne annuelle 2015 – graphiques pour Atrazine, DEDIA et DEA - stations à dépassement

S.T.E. Sciences et Techniques de l'Environnement - Proposition D14-595 -octobre 2016 – page 14

11 stations sont concernées par ce dépassement, mais, pour aucune d'elles, la somme des substances phytosanitaires est inférieure à 0,5 µg/l. Une moyenne annuelle par substance est calculée (sur la base de 2 ou 4 analyses) puis comparée aux normes en vigueur (Figure 3).

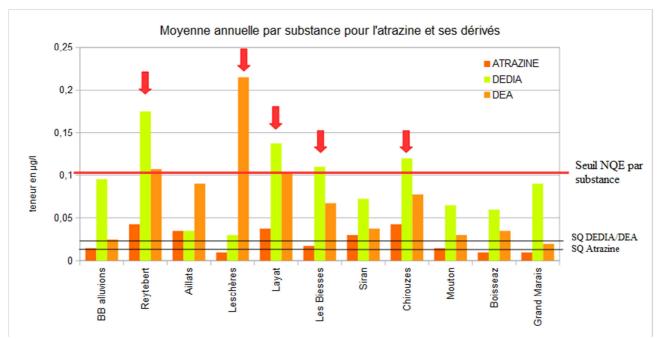


Figure 3 : stations présentant des teneurs en atrazine et métabolites au-dessus des NQE

Sur la Figure 3, on observe un dépassement pour le DEDIA et/ou pour le DEA en moyenne annuelle pour les 5 stations suivantes :

- ✓ Captage de Reytebert (CP)
- ✓ Puits des Chirouzes (CP)
- ✓ Captage Layat (CP)
- ✓ Captage les Biesses (CP)
- ✓ Captage des Leschères (RS)

Les stations des ressources stratégiques sur la Molasse présentent des teneurs très faibles en pesticides. Aucun pesticide n'a été quantifié sur 11 des 16 forages étudiés.

3.3.3 MICROPOLLUANTS ORGANIQUES

Les micropolluants organiques analysés appartiennent à 3 grands groupes :

- ✓ Hydrocarbures : HAP, BTEX, hydrocarbures légers (HYDL),
- ✓ PCB,
- ✓ Composés organiques volatils et Solvants.

Le Tableau 1 résume les résultats du suivi 2015 sur les micropolluants organiques fors pesticides.

Tableau 1 : détection de micropolluants organiques (hors pesticides) sur les eaux souterraines du Département de l'Isère en 2015

Туре	Groupe	Résultats 2015	Stations
			concernées
Hydrocarbures:	s: HAP 3 substances: Benzo(a)pyrène Benzo(b) fluoranthène		Captage Morellon
		Phénanthrène	Puits Passseron
	BTEX	Aucune substance détectée	
	hydrocarbures 1 sub- légers (HYDL) Ethylterti		Captage Morellon
PCI	В	Aucune substance détectée	
Solvants	Trihalométhane	Bromoforme Chloroforme Dichloro monobromométhane	Gerbey – Mouton – Grand Marais –
	Solvants organohalogénés	Dichloroéthane 1.2 Tetrachloroéthylène Tetrachlorure de carbone Trichloroéthylène Trichloroéthane 1.1.1	Passeron Forage du Poulet - Les Biesses

Il ressort de ces analyses l'absence de PCB et de BTEX dans les eaux échantillonnées.

En revanche, des HAP et des solvants sont mesurés sur plusieurs stations :

- ✓ Présence de HAP sur le captage Morellon
- ✓ Contamination en solvants sur plusieurs sites

Forage du poulet : lors des 4 campagnes sur les solvants utilisés notamment pour le nettoyage à sec : tetrachloroéthylène, trichloroéthane (cf. le chloroforme (CHCl $_3$), le bromodichlorométhane (CHBrCl $_2$), le chlorodibromométhane (CHClBr $_2$) et le bromoforme (CHBr $_3$).

Tableau 2);

- o **Puits Passeron** : contamination en tetrachloroéthylène
- o Captage les Biesses : contamination en trichloroéthane ;
- o solvants bromés : **Station du Grand Marais**, Puits Gerbey et réservoir du Mouton.

Au droit des ouvrages Gerbey et Grand Marais, l'exploitant effectue une chloration directement dans le puits. Cette injection de chlore peut générer une production potentielle de trihalométhanes :

le chloroforme (CHCl₃), le bromodichlorométhane (CHBrCl₂), le chlorodibromométhane (CHClBr₂) et le bromoforme (CHBr₃).

Tableau 2 : résultats des analyses 2015 pour les solvants trichloroéthylène, tetrachloroéthylène, et trichloroéthane

captage/substance	Tetrachloroethylene	Trichloroethylene	Trichloroethane 1,1,1
Captage Les Biesses		résultats en μg/l	
16/03/2015	<0,2	0,2	0,6
15/06/2015	<0,2	<0,2	0,4
17/09/2015	<0,2	<0,2	0,7
08/12/2015	<0,2	<0,2	0,7
Forage du Poulet			
17/03/2015	3,7	<0,2	0,7
15/06/2015	2,6	0,2	0,6
15/09/2015	2,2	<0,2	0,8
08/12/2015	3,1	0,2	0,6
Puits de Passeron			
19/03/2015	8,6	<0,2	<0,2
16/09/2015	4,5	<0,2	<0,2

A noter que le forage du Poulet a subit des travaux d'équipements en 2015.

Les valeurs mesurées en 2015 sur ces trois sites sont en dessous des valeurs seuils de qualité (NQE) pour les eaux souterraines (cf. $\S 2.3$) pour les substances listées : tetrachloroéthylène et trichloroéthylène à $10 \, \mu g/l$.

On constate toutefois une nette contamination des eaux du forage du Poulet et du Puits de Passeron en tétrachloroéthylène.

Pour le paramètre solvant, l'état chimique est bon pour toutes les eaux souterraines du département.

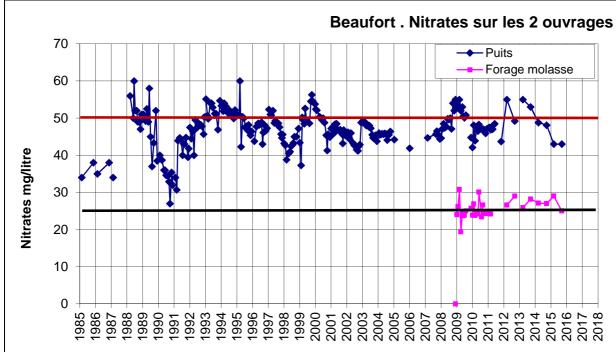
4 ÉVOLUTION TEMPORELLE

4.1 DONNEES ANTERIEURES DU DEPARTEMENT DE L'ISERE

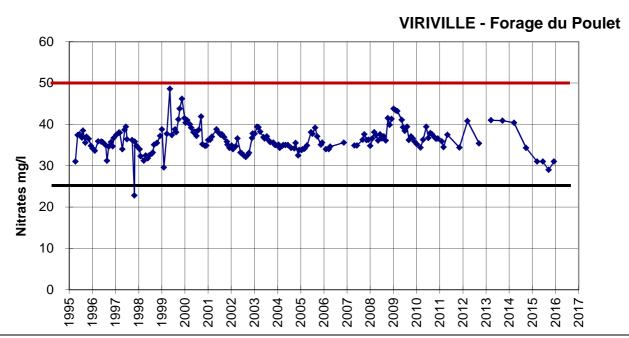
Le Département a fourni une base de données qui intègre les données antérieures avec une série complète de données pour 2011-2014.

On dispose également des résultats d'analyses depuis les années 2000 sur 22 stations pour certains pesticides : Atrazine, Désethyl atrazine, Atrazine Déisopropyl, Simazine, Fluzilazol, Deisopropylatrazine, Terbutylazine et Propazine.

Enfin, sur la problématique nitrates, 9 captages prioritaires et programme de surveillance dispose d'une chronique de près de 30 ans.

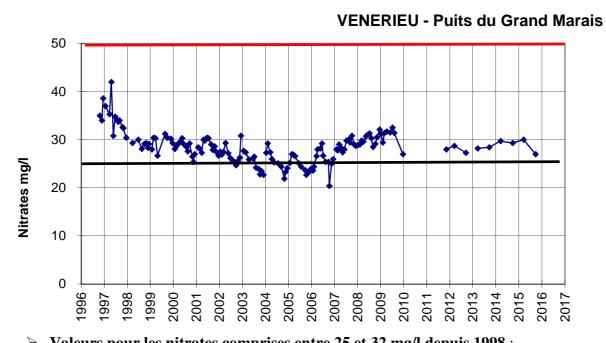

4.2 ÉVOLUTION PARAMETRE NITRATES

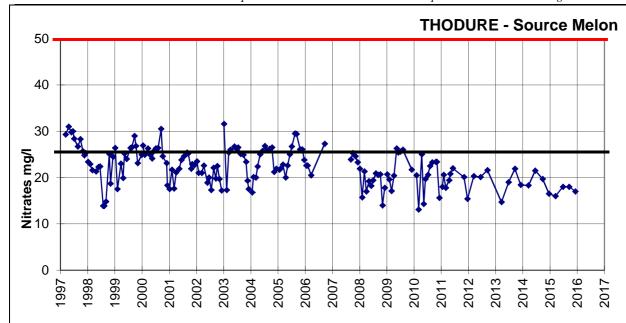
Le suivi des nitrates constitue un enjeu majeur pour les eaux souterraines, notamment pour le réseau captages prioritaires. L'analyse temporelle est divisée en trois parties


4.2.1 CAPTAGES A LONGUE CHRONIQUE

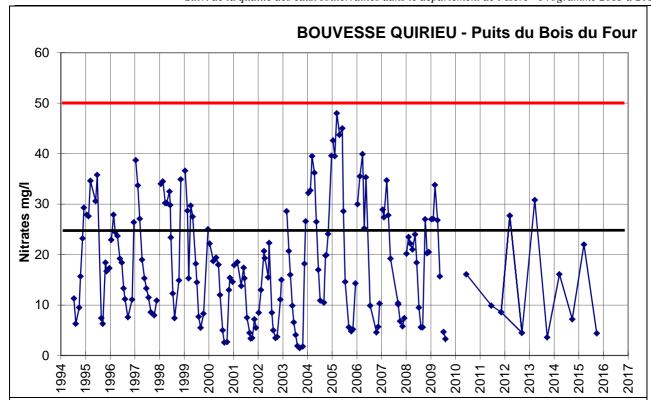
Les graphiques suivants sont élaborés sur les 9 sites à enjeux disposant d'une longue chronique (15 à 30 ans), les résultats d'analyses pour le paramètre Nitrates (en mgNO₃⁻/l) sont commentés en termes de concentration et d'évolution dans le temps.

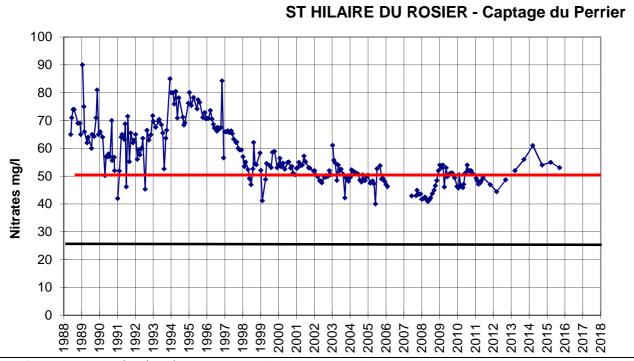

Sur les graphiques suivants, la courbe représente les analyses réalisées sur eaux brutes sur chacun des sites. A titre indicatif : la valeur de 50 mg/l (trait rouge) correspond au seuil de potabilité sur les eaux distribuées, mesurées au robinet de l'abonné. La valeur de 25 mg/l (trait noir) correspond au niveau guide.

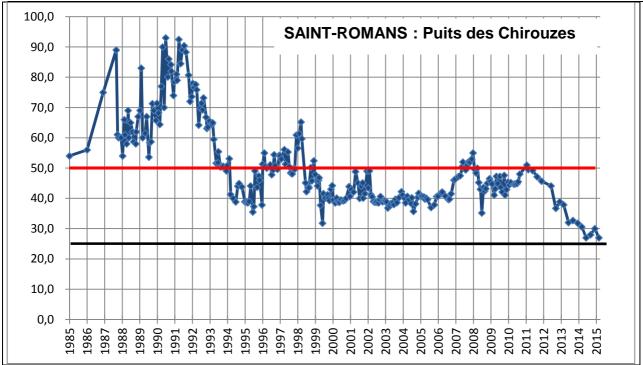

- ➤ Valeurs pour les nitrates voisines de 50 mg/l depuis 1988 ; Pour le forage sur Molasse, nitrates entre 20 et 30 mg/l ;
- Mesures entre 40 et 50 mg/l en 2015 pour le puits Bas Beaufort => stable


- ➤ Valeurs pour les nitrates comprises entre 30 et 40 mg/l depuis 1995 ;
- ➤ 4 Mesures proches de 30 mg/l en 2015 pour le forage du Poulet => amélioration

- Valeurs pour les nitrates comprises entre 30 et 45 mg/l depuis 1997 ;
- 4 Mesures entre 29 et 42 mg/l en 2015 pour les captages Reytebert => stable


- Valeurs pour les nitrates comprises entre 25 et 32 mg/l depuis 1998 ;
- 2 Mesures sur la même gamme en 2015 pour les Puits du Grand Marais => stable


- ➤ Valeurs pour les nitrates comprises entre 13 et 25 mg/l depuis 2008 ;
- ➤ 4 Mesures entre 16 et 18 mg/l en 2015 pour la source Melon => légère amélioration


- ➤ Valeurs pour les nitrates comprises entre 24 et 50 mg/l entre 2007 et 2013 ;
- ➤ 8 Mesures entre 11 et 16 mg/l en 2014/2015 pour le captage Sermerieu
 - ⇒ Nette amélioration

- ➤ Valeurs pour les nitrates variables (5 à 40 mg/l) avec variations saisonnières marquées depuis 1994 ; l'amplitude est réduite depuis 2010 (5 à 30 mg/l) ;
- ➤ 2 Mesures 22 et 4 mg/l en 2015 pour le puits du Bois du Four => amélioration ++

- ➤ Valeurs très élevées pour les nitrates depuis 1988 comprises entre 50 et 90 mg/l jusqu'en 1999 ; entre 40 et 60 mg/l de 1999 à 2015
- > 2 Mesures entre 53 et 55 mg/l en 2015 pour le captage du Perrier => stable...mais pollué!

- ➤ Valeurs pour les nitrates comprises entre 30 et 55 mg/l depuis 1999 ; > 50 mg/l auparavant ;
- ➤ 4 Mesures entre 25 et 30 mg/l en 2015 pour le Puits des Chirouzes => Nette Amélioration

4.2.2 CAPTAGES PRIORITAIRES

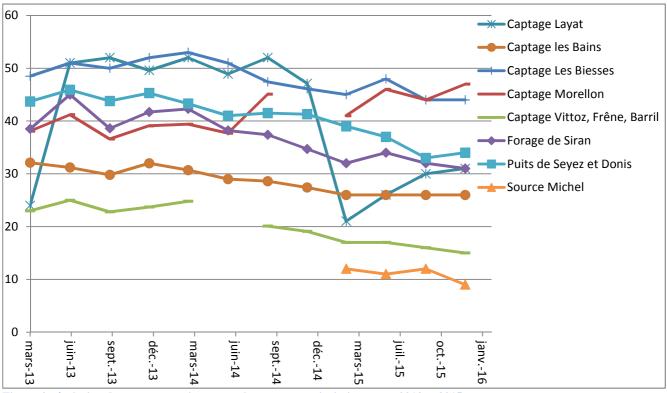


Figure 4 : évolution des teneurs en nitrates sur les captages prioritaires entre 2013 et 2015

Sur les captages prioritaires, on observe une nette amélioration pour le paramètre nitrates : ✓ sur le captage Layat entre 2013 et 2015 : de 50 mg/l à 30 mg/l ;

- ✓ Puits de Seyes et Donis : baisse de 10 mg/l entre 2013 et 2015 ;
- ✓ Captage des Biesses : passage sous le seuil des 50 mg/l en 2015 ;
- ✓ Forage du Siran : réduction progressive des nitrates 10 mg/l ;
- ✓ Captage les bains : légère baisse, teneur stable en 2015 à 25 mg/l;
- ✓ Captage Frêne-Barril-Vittoz : baisse progressive avec des teneurs < 20 mg/l en 2015.

En revanche, augmentation des teneurs en nitrates sur les points suivants :

✓ Captage Morellon: hausse de 10 mg/l en 2015, avec des valeurs comprises entre 40 et 50 mg/l;

La teneur en nitrates est peu élevée sur la source Michel (entre 10 et 15 mg/l).

4.2.3 RESEAU DE SURVEILLANCE

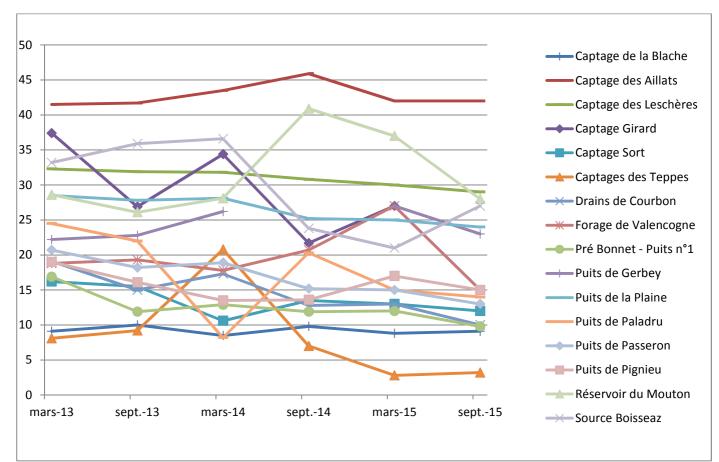
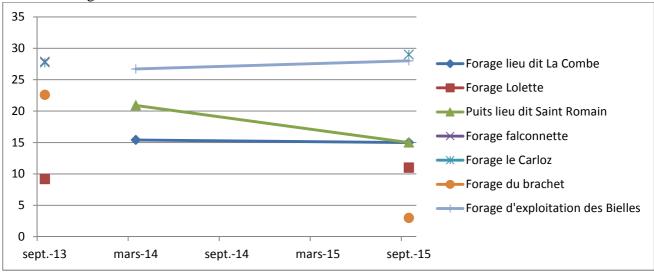
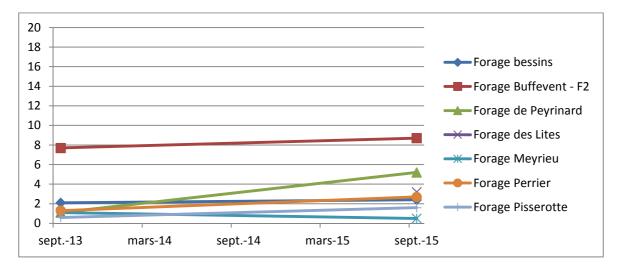



Figure 5 : évolution des concentrations en nitrates sur les eaux souterraines -réseau de surveillance


Tendance évolutive de la teneur en nitrates	Diminution	stable	augmentation
Valeurs élevées > 20 mg/l	Girard Boisseaz Leschères	Aillats Plaine Gerbey	Mouton
Valeurs modérées < 20 mg/l	Paladru Passeron Pré Bonnet – puits n°1 Courbon Teppes	Sort Blache Pignieu	Valencogne

4.2.4 RESSOURCES STRATEGIQUES

La tendance est stable sur les points des ressources stratégiques : La Combe, Lolette, Les Bielles, Une baisse significative de la teneur en nitrates est observée sur St Romain et Brachet.

Sur les points suivants, la teneur en nitrates est inférieure à 10 mg/l et la concentration est similaire en 2013 et 2015. On observe une augmentation sur le forage de Peyrinard.

4.2.5 CONCLUSIONS

L'analyse des nitrates montrent globalement une amélioration de la qualité des eaux souterraines du département pour ce paramètre –

Une seule station (*le captage du Perrier à St Hilaire du Rosier*) est classée en mauvais état chimique en 2015, situation bien plus favorable que par le passé.

4.3 ÉVOLUTION DES TENEURS EN PESTICIDES

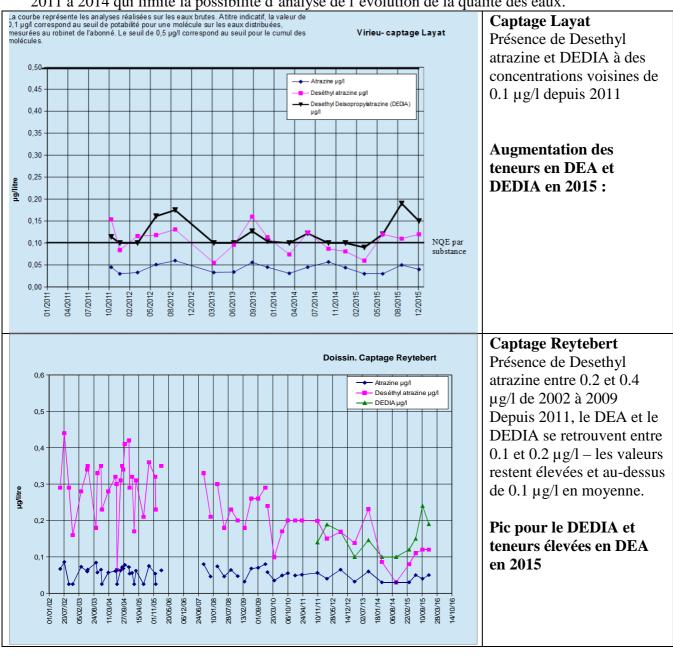
4.3.1 Liste des substances identifiées entre 2011 et 2015

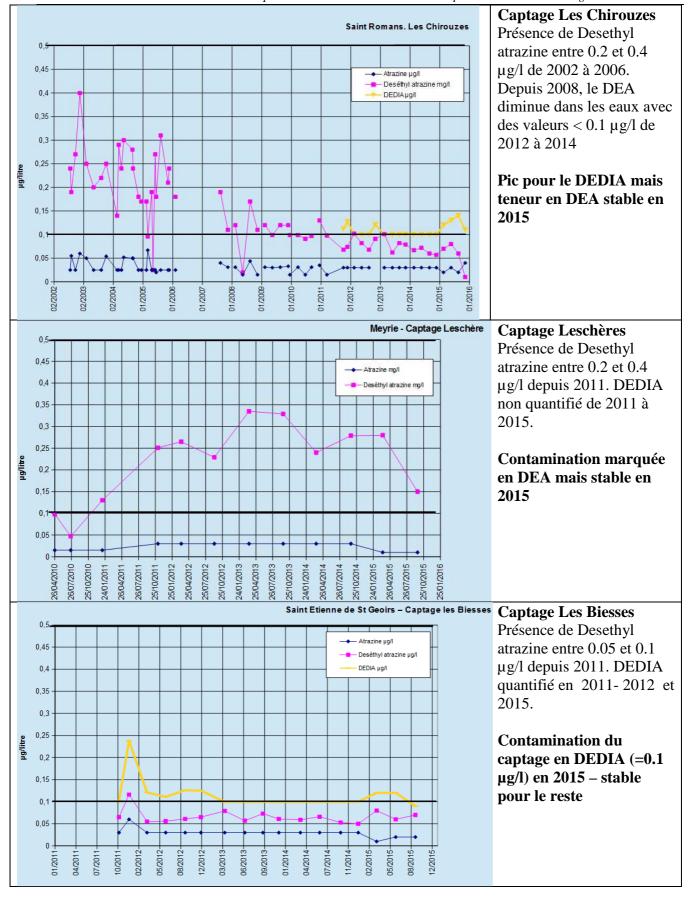
On observe une augmentation du nombre de molécules identifiées en 2015 : 22 substances parmi lesquelles on retrouve de nombreux métabolites. Ce sont des herbicides qui sont représentés essentiellement.

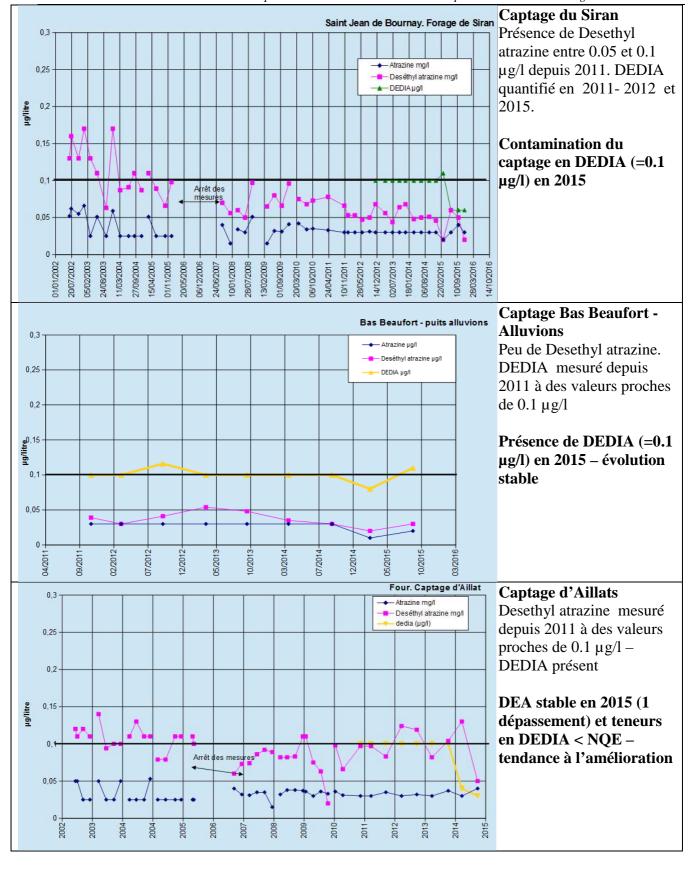
Entre 2011 et 2014, chaque suivi annuel comporte entre 72 et 96 échantillons, volume 20% inférieur à 2015 où 114 échantillons ont été analysés.

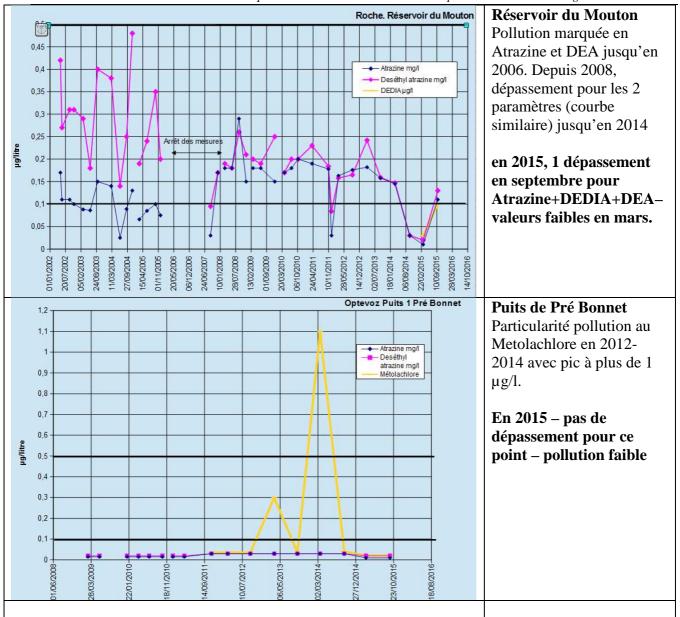
Par rapport aux analyses précédentes 2011-2014 (Tableau 3), plusieurs constats pour les analyses 2015 :

- ✓ 2 à 3 fois plus de quantification de pesticides, essentiellement relié à une augmentation :
 - ➤ De 5 à 7 fois pour l'atrazine (passage du SQ de 0.03 à 0.01);
 - > De 8 à 80 fois pour le DEDIA (passage du SQ de 0.1 à 0.02);
 - ➤ De 1,2 fois pour le Desethyl atrazine (passage du SQ de 0.03 à 0.02);
- ✓ l'apparition de 10 substances, non mesurées entre 2011 et 2014, on notera l'apparition assez significative de la Simazine (baisse du SQ de 0.02 à 0.01), mais de faibles détections pour les autres paramètres ;
- ✓ 9 molécules ne sont plus retrouvées en 2015 alors qu'elles avaient été identifiées entre 2011 et 2013 ;
- ✓ Nette augmentation de la contamination entre 2014 et 2015


Tableau 3 : liste des molécules quantifiées sur les suivis des eaux souterraines 2011 à 2015.


groupe	paramètres	2015	2014	2013	2012	2011
Triazines	Atrazine	72	10	17	18	8
Triazines	DEDIA	85	1	3	12	10
Triazines	Atrazine Desethyl	62	46	56	50	33
Triazines	Atrazine Deisopropyl	1	1	2	2	
Triazines	Hydroxyatrazine	9	4	6	6	2
Triazines	Simazine	20				
Triazines	Terbutylazine Desethyl	2				
triazines	Terbumeton Desethyl	1				
Urées substituées	Isoproturon	1			1	2
Urées substituées	Chlortoluron	2				
Diazines	Bentazone	5	1	4	3	2
Amides	S Metolachlore	4				
Amides	Metolachlore (R+S)	10	2	5	6	
Amides	Metazachlore	2		2	3	
Aminophosphonates	Glyphosate	3		2	11	
Aminophosphonates	AMPA	1		1		
autres herbicides	Nicosulfuron	2				
autres herbicides	Mesotrione	1				
autres herbicides	Triclopyr	1	2			
fongicides	Cyproconazol	2				
Insecticides	Imidaclopride	1				


Insecticides	Anthraquinone	1				
Nombre de quantifications (par an)		288	67	102	115	64
Nombre substances		22	8	14	12	9
Nombre d'échantillons		114	92	96	93	72


4.3.2 EVOLUTION DES TENEURS EN PESTICIDES SUR LES SITES A ENJEUX

Pour les 9 stations pour lesquels un dépassement de $0.1~\mu g/l$ (cf. Figure 3) a été mesuré lors du suivi 2015, on propose de visualiser l'évolution des teneurs en pesticides pour les trois substances concernées : Atrazine, Desethyl Atrazine (DEA) et DEDIA. Une courbe pour le DEDIA est rajoutée à la chronique existante. Toutefois, il faut tenir compte d'un seuil de détection élevé : $0.1~\mu g/l$ entre 2011 à 2014 qui limite la possibilité d'analyse de l'évolution de la qualité des eaux.

Sur le captage Sermerieu, les pollutions en glyphosate mesurées en 2012-2013 ne sont plus mises en évidence lors du suivi 2015.

Pour le captage de la Blache, On n'a pas retrouvé de bentazone en 2015 alors qu'une pollution avait été détectée sur 2012-2013 (0.1 à 0.35 μ g/l).

4.3.3 MISE EN EVIDENCE DES MOLECULES EMERGENTES

Parmi les pesticides identifiés, on retrouve des herbicides appartenant à la famille des triazines. C'est l'atrazine et des produits de dégradation qui représentent les plus grosses concentrations en pesticides (teneur $> 0.1 \ \mu g/l$ – présence de plusieurs molécules). Il convient de préciser certains éléments sur cet herbicide et les pollutions qu'il génère.

L'atrazine est un herbicide de formule C8H14ClN5, très soluble dans l'eau, sa dégradation est lente (1/2 vie = 335 jours dans l'eau). Cet herbicide a été couramment utilisé en France jusqu'en 2003 ou il est a été strictement interdit (comme dans toute l'UE). Cette substance se dégrade par le biais de

processus de dégradation de type physico-chimique par photolyse et hydrolyse, et avec l'intervention des microorganismes de l'eau et des sols.

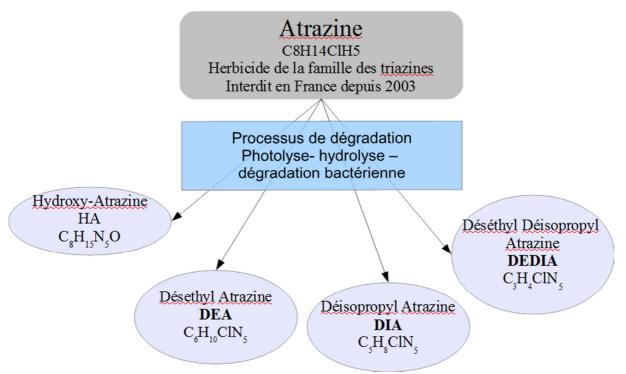


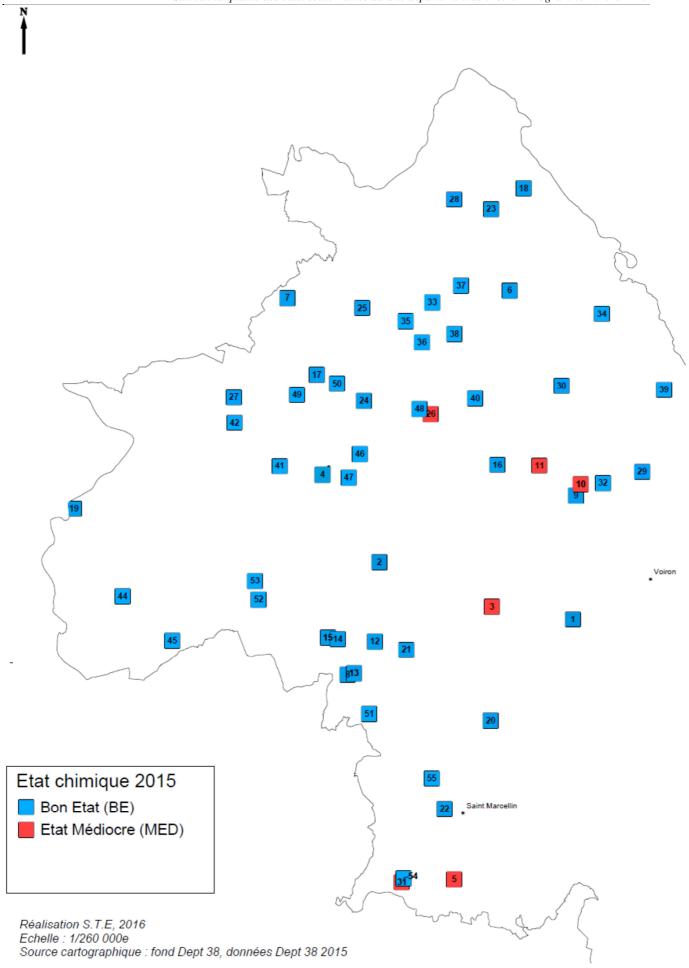
Figure 6 : mécanismes de dégradation de l'Atrazine - produits de dégradation

Les composés formés sont principalement : le Désethyl Atrazine (DEA), le Deisopropyl Atrazine (DIA), Déséthyl Atrazine (DEDIA). Ce dernier est particulièrement présent dans les eaux souterraines du département de l'Isère en 2015. C'est une molécule qui est très fréquemment quantifiée (50 % environ) alors qu'elle l'était peu lors des suivis antérieurs. Deux explications :

- ✓ La limite de quantification du DEDIA était de 0,1 μg/l pour les suivis 2011-2014 (seuil haut), elle est passée à 0.02 μg/l en 2015, d'où une découverte plus fréquente ;
- ✓ Le DEDIA est un produit de dégradation plus léger (masse molaire =145 g/mol), il forme très certainement l'un des composés ultimes de dégradation de l'atrazine

Le restant de la substance active épandue sur le terrain va migrer par lessivage dans les sols puis rejoindre les eaux souterraines. Ce qui explique que la teneur en atrazine et surtout de ses métabolites puissent augmenter pendant plusieurs années après l'arrêt des apports de surface.

La dégradation de la substance active dans les eaux souterraines est d'autant plus lente que les eaux sont désoxygénées et que le renouvellement est faible.


Le **DEDIA**: le Deisopropyl Déséthyl Atrazine (code sandre : 1830) est un produit de dégradation de l'Atrazine quantifié très fréquemment sur les échantillons en 2015. Il était déjà repéré dans les eaux depuis 5 ans, mais le seuil de quantification ayant baissé en 2015 (0.1 à 0.02 µg/l), sa détection a été multipliée par 10 environ. Cela ne signifie pas pour autant une présence plus importante dans les eaux souterraines. La présence très fréquente du desethyl atrazine (métabolite de la même famille) entre 2011 et 2014 témoigne de la contamination des eaux par les triazines.

Parmi les molécules nouvellement quantifiées, on retrouve des herbicides (Nicosulfuron, mesotrione), des insecticides (Cyproconazol, Imidaclopride) et un fongicide (Anthraquinone).

5 INTERPRETATION GENERALE

5.1 QUALITE DES EAUX PAR PROGRAMME DE SUIVI

Une synthèse cartographique de la qualité des eaux à travers l'évaluation de l'état chimique des eaux sur 2015 est établie sur la base des paramètres Nitrates –Pesticides et solvants. Cette analyse se base uniquement sur la moyenne annuelle 2015 pour ces paramètres.

	N°	Nom station	Nitrates	Pesticides	solvants chlorés	Etat chimique
	1	Captage les Bains	BE	BE	BE	BE
	2	Puits de Seyez et Donis	BE	BE	BE	BE
	3	Captage "Les Biesses"	BE	MED	BE	MED
	4	Forage de Siran	BE	BE	BE	BE
	5	Puits des Chirouzes	BE	MED	BE	MED
	6	Captage de Sermerieu	BE	BE	BE	BE
res	7	Captage Morellon	BE	BE	BE	BE
tai	8	Source Melon	BE	BE	BE	BE
0.T.	9	Captage Vittoz, Frêne, Barril	BE	BE	BE	BE
Captages prioritaires	10	Captage Layat	BE	MED	BE	MED
ses	11	Captage de Reytebert	BE	MED	BE	MED
tag	12	Forage du Poulet	BE	BE	BE	BE
Jab	13	Source Michel	BE	BE	BE	BE
	14	Bas Beaufort - forage molasse	BE	BE	BE	BE
	15	Bas Beaufort - puits alluvions	BE	BE	BE	BE
	16	Captage Girard	BE	BE	BE	BE
	17	Réservoir du Mouton	BE	BE	BE	BE
	18	Puits du Bois du Four	BE	BE	BE	BE
	19	Puits de Gerbey	BE	BE	BE	BE
	20	Captage de la Blache	BE	BE	BE BE	BE BE
as a	20	Source Boisseaz	BE	BE		
Réseau surveillance	22	Drains de Courbon	BE	BE	BE BE	BE BE
l lla						
.ve	23	Captage Sort	BE	BE	BE	BE
ms	24	Captage des Aillats	BE	BE	BE	BE
an	25	Puits de Pignieu	BE	BE	BE	BE
ése	26	Captage des Leschères	BE	MED	BE	MED
~	27	Puits de la Plaine	BE	BE	BE	BE
	28	Pré Bonnet - Puits n°1	BE	BE	BE	BE
	29	Puits de Paladru	BE	BE	BE	BE
	30	Puits de Passeron	BE	BE	BE	BE
	31	Source du Perrier	MED	BE	BE	MED
	32	Forage de Valencogne	BE	BE	BE	BE
	33	Station du Grand Marais	BE	BE	BE	BE
	34	Captages des Teppes	BE	BE	BE	BE
an ce	35	Piézomètre lieu dit Chevalière	BE	BE	BE	
Ressource du Catelan	36	Puits lieu dit prairie Mozas	BE	BE	BE	
ess C	37	Forage Pont Sicard	BE	BE	BE	
ਬਰ	38	Forage de la Grande Charrière	BE	BE	BE	
	39	Forage d'exploitation F1 de Chimilin	BE	BE	BE	
	40	Forage d'exploitation F2	BE	BE	BE	
	41	Forage d'exploitation des Bielles	BE	BE	BE	
	42	Forage lieu dit La Combe	BE	BE	BE	
<u> </u>	43	Forage lieu dit Glay	BE	BE	BE	
las	44	Forage des Lites	BE	BE	BE	
Mo]	45	Puits lieu dit Saint Romain	BE	BE	BE	
la l	46	Forage Meyrieu	BE	BE	BE	
de	47	Forage Le Carloz	BE	BE	BE	
Ressource de la Molasse	48	Forage Buffevent - F2	BE	BE	BE	
	49	Forage du Brachet	BE	BE	BE	
esse	50	Forage Pisserotte	BE	BE	BE	
Ž	51	Forage Peyrinard	BE	BE	BE	
	52	Forage Lolette	BE	BE	BE	
	53	Forage Falconnette	BE	BE	BE	
	54	Forage Perrier	BE	BE	BE	
	55	Forage Bessins	BE	BE	BE	
	טט	n orage Dessins	DĽ	DE	DE	

A noter : Le traitement SEEE pour établir l'état chimique en prenant en compte les critères de la DCE sera réalisé par l'Agence l'Eau RMC sur la base d'une moyenne pluriannuelle.

5.2 ÉVOLUTION SPATIALE

La plupart des points étudiés se trouvent sur des aquifères de types alluvionnaires. Ils sont peu profonds et très fortement reliés aux écoulements de surface : nappe d'accompagnement.

On propose une étude par masse d'eau :

✓ FRDG 147 : Alluvions anciennes terrasses de Romans et de l'Isère (à dominante sédimentaire)

NUMERO	CODE_BSS	NOM_POINT_EAU	Masse d'eau
5	07953X0006/S	Puits des Chirouzes	FRDG147
31	07953X0101/P	Source du Perrier	FRDG147

La source Perrier à Saint Hilaire du Rosier, est la plus contaminée en nitrates sur 2015. Le puits des Chirouzes présentent une contamination en herbicides.

✓ FRDG 105 : Calcaire jurassiques et moraines de l'Ile Crémieu

	<u> </u>		
NUMERO	CODE_BSS	NOM_POINT_EAU	Masse d'eau
18	07005X0002/S	Puits du Bois du Four	FRDG105
23	06998X0021/S	Captage Sort	FRDG105
25	07232D0056/S	Puits de Pignieu	FRDG105
28	06998X0020/P	Pré Bonnet - Puits n⁰	FRDG105

Sur ces points, on constate une globale amélioration de la qualité des eaux pour les nitrates et pesticides.

✓ FRDG303 : Alluvions de la Plaine de Bièvre-Valloire

NUMERO	CODE_BSS	NOM_POINT_EAU	Masse d'eau
2	07476X0018/P	Puits de Seyez et Donis	FRDG303
3	07714X0055/F2	Captage "Les Biesses"	FRDG303
15	07711X0007/F	Bas Beaufort - puits alluvions	FRDG303

Les eaux sont riches en nitrates sur ces points, mais la tendance est à l'amélioration, et on observe quelques dépassements pour les herbicides (DEDIA).

✓ FRDG326 : Alluvions du Rhône entre le confluent du Guiers et de la Bourbre

NUMERO	CODE_BSS	NOM_POINT_EAU	Masse d'eau
34	07242X0006/P1	Captages des Teppes	FRDG326

Ce point ne présente pas de pollution particulière en pesticides comme en nitrates.

✓ FRDG340 : Alluvions de la Bourbre et du Catelan

NUMERO	CODE_BSS	NOM_POINT_EAU	Masse d'eau
7	07231X0011/P	Captage Morellon	FRDG340
6	07241X0014/483D	Captage de Sermerieu	FRDG340
29	07482X0035/292D	Puits de Paladru	FRDG340
30	07245X0036/P	Puits de Passeron	FRDG340
33	07233X0012/P	Station du Grand Marais	FRDG340
35	07233X0031/PZ	Piézomètre lieu dit Chevalière	FRDG340
36	07237X0119/F	Puits lieu dit prairie Mozas	FRDG340

37	07234X0014/F	Forage Pont Sicard	FRDG340	
38	07233X0028/F1	Forage de la Grande Charrière	FRDG340	07238X0041/F Forage Pré de Letra

Les alluvions du Catelan et Bourbre présentent des teneurs en nitrates bonne à moyenne (<25 mg/l) avec une baisse globale de la concentration en nitrates (en particulier Sermerieu), excepté pour le captage du Morellon où l'on retrouve des valeurs supérieures à 40 mg/l de nitrates. Pour les pesticides, aucun dépassement n'est repéré

✓ FRDG 350 : Formations quaternaires en placage discontinus du Bas Dauphiné (anciennement appartenant à FRDG219 – molasses miocènes)

1	07721X0010/F	Captage les Bains	FRDG350
20	07718X0040/HY	Captage de la Blache	FRDG350
11	07481X0029/147B29	Captage de Reytebert	FRDG350
50	07236X0054/RECO	Forage Pisserotte	FRDG350
32	07482X0028/F	Forage de Valencogne	FRDG350

La nappe alluvionnaire est assez riche en nitrates (Reytebert, Blache et les Bains). Le captage de Reytebert est contaminé également en herbicides.

✓ FRDG248 – 1 : affleurant - Molasses miocènes du Bas Dauphiné entre les vallées de l'Ozon et de la Drôme (anciennement FRDG219)

NUMERO	CODE_BSS	NOM_POINT_EAU	Masse d'eau	aquifère	nouveau code
9	07481X0038/560G	Captage Vittoz, Frêne, Barril (mélange)	FRDG219	alluvions	FRDG248
10	07482X0026/F	Captage Layat	FRDG219	alluvions	FRDG248
17	07236X0005/F	Réservoir du Mouton	FRDG219	alluvions	FRDG248
21	07713X0046/HY	Source Boisseaz	FRDG219	alluvions	FRDG248
22	07953X0092/F	Drains de Courbon	FRDG219	alluvions	FRDG248
24	07236X0035/HY	Captage des Aillats	FRDG219	alluvions	FRDG248
26	07237X0098/P	Captage des Leschères	FRDG219	alluvions	FRDG248

Les captages les plus touchés par des pollutions aux herbicides sont : Leschères, Layat, Mouton et Aillats : Ces captages sur alluvions fluvio-glaciaires sont regroupés sur le bassin versant de la Bourbre entre Blandin et Bonne-famille. Cette nappe est riche en nitrates (Mouton, Aillats), avec une tendance à l'amélioration pour ce paramètre sur Layat, Leschères, Vittoz.

○ FRDG248 – 2 : Molasse.

14	07711X0040/F	Bas Beaufort - forage molasse	FRDG219	Molasse	FRDG248
39	07247X0019/F1	Forage d'exploitation F1 de Chimilin	FRDG219	Molasse	FRDG248
40	07238X0076/F2	Forage d'exploitation F2	FRDG219	Molasse	FRDG248
41	07471X0042/F	Forage d'exploitation des Bielles	FRDG219	Molasse	FRDG248
42	07228X0027/F2	Forage lieu dit La Combe	FRDG219	Molasse	FRDG248
44	07466X0103/F	Forage des Lites	FRDG219	Molasse	FRDG248
45	07703X0097/P	Puits lieu dit Saint Romain	FRDG219	Molasse	FRDG248
46	07472X0006/F	Forage Meyrieu	FRDG219	Molasse	FRDG248

48	07237X0115/P	Forage Buffevent - F2	FRDG219	Molasse	FRDG248
49	07235X0029/F	Forage du Brachet	FRDG219	Molasse	FRDG248
51	07716X0016/F	Forage Peyrinard	FRDG219	Molasse	FRDG248
52	07475X0009/F3	Forage Lolette	FRDG219	Molasse	FRDG248
53	07468X0052/F	Forage Falconnette	FRDG219	Molasse	FRDG248
54	07953X0109/F	Forage Perrier	FRDG219	Molasse	FRDG248
55	07717X0002/F	Forage Bessins	FRDG219	Molasse	FRDG248

L'aquifère de la molasse, plus profond est globalement préservé des contaminations en nitrates et pesticides (captages n°39 à 55). La tendance est à la baisse pour le paramètre Nitrates.

✓ FRDG 319: Alluvions des vallées de Vienne (Véga, Gère, Vesonne, Sévenne) - DG319 - FRDG319 associé depuis 13/10/2015

47	07472X0024/F	Forage Le Carloz	FRDG319
4	07472X0002/S1	Forage de Siran	FRDG319
27	07228X0009/P	Puits de la Plaine	FRDG319

Ces alluvions (proche St Jean de Bournay) sont assez riches en nitrates (entre 20 et 40 mg/l), les mesures en herbicides restent encore modérées.

✓ FRDG395 : Alluvions du Rhône depuis l'amont de la confluence du Giers jusqu'à l'Isère

19 07462X0006/P Puits de Gerbey FRDG39
--

Ces alluvions sont assez riches en nitrates (entre 20 et 30 mg/l), et préservés des herbicides.

✓ FRDG511 : Formations variées de l'Avant-Pays Savoyard dans BV du Rhône

16	07474X0015/P	Captage Girard	FRDG511	alluvions	

Le captage présente des valeurs modérées en nitrates.

FRDG526 : Formations du Pliocène supérieur peu aquifères des plateaux de Bonnevaux et Chambarrans - DG526 - associé depuis 21/01/2016

			1		
	8	07712X0014/S	Source Melon	FRDG526	alluvions
ſ	13	07712X0013/HY	Source Michel	FRDG526	alluvions

Ces deux points présentent des teneurs modérés en nitrates (10 à 20 mg/l) avec présence d'herbicides (0.05 μ g/l par substance).

5.3 CONCLUSIONS: EVOLUTION DE LA QUALITE DES EAUX

Les eaux souterraines du département de l'Isère restent globalement riches en nitrates, mais ce suivi 2015 montre une amélioration globale de la qualité des eaux pour ce paramètre. A noter que l'ensemble des captages prioritaires présentent des valeurs en nitrates inférieures à 50 mg/l.

Pour les pesticides, la situation est moins favorable puisque l'ensemble des captages CP et RS présentent une contamination en herbicides : Atrazine, mais surtout les produits de dégradation **DEA et DEDIA**. Le suivi 2015 met en évidence une augmentation des quantifications en DEDIA. Il s'agit d'une molécule de plus en plus fréquente dans les eaux souterraines en Rhône Alpes.

Les captages étudiés au titre des ressources stratégiques présentent des teneurs en nitrates faibles à

Suivi de la qualité des eaux souterraines dans le département de l'Isère - Programme 2015 à 2018 modérées : les aquifères de la Molasse et du Catelan restent peu touchés par les pollutions, même constat pour les pesticides.

